

Future of targeted therapies in Breast Cancer

Ahmad Awada, MD, PhD Medical Oncology Clinic Institut Jules Bordet Université Libre de Bruxelles (U.L.B.) Brussels, Belgium

02/2013

Molecular Breast Cancer : Active research (1)

- Understanding the heterogeneity of TNBC and looking for targets and new drugs
- Significant advances in HER2-targeted therapy (New agents, dual inhibition)
- Understanding the cross-talk between endocrine and growth factor receptors pathways and overcoming endocrine therapy resistance

Molecular Breast Cancer : Active research (2)

- Tumor microenvironment

- Improve understanding of stromal epithelial interaction
- The role of leukocytes/macrophages seems important
- Immunotherapy shows promise in early experiments

- Molecular imaging

 Improved diagnosis, mapping tumor heterogeneity and (early) prediction of response/resistance to treatment

Luminal diseases

LUMINAL METASTATIC BREAST CANCER : AVAILABLE ENDOCRINE THERAPY

- Tamoxifen
- Aromatase inhibitors
 - non steroidals (Anastrozole, Letrozole)
 - steroidal (Exemestane)
- Fulvestrant (500 mg > 250 mg)
- **Progestatifs (Oestrogenes)**

 Androgen synthesis inhibitor (Aberaterone): Phase II studies are ongoing

Cross-talk between signal transduction and endocrine pathways (feedback loops!)

Adapted from Johnston 2005

Endocrine therapy + signal transduction inhibitors: Therapeutic breakthrough in HER2 disease (trastuzumab, lapatinib) and Everolimus-based endocrine therapy

HER2 inhibitor TRIALS

Arimidex ± trastuzumab Letrozole ± Lapatinib $\rightarrow Positive results \\ \rightarrow Positive results$

Everolimus (m-Tor inhibitor) TRIALS

Letrozole ± Everolimus (mTor inhibitor) Tamoxifen ± Everolimus (mTor inhibitor) Exemestane ± Everolimus (mTor inhibitor)

- \rightarrow positive results*
- \rightarrow Positive trial
- \rightarrow Highly positive trial

CDK inhibitor trial

Letrozole \pm PD0332991 (CDK 4/6 inhibitor) \rightarrow Positive trial

Endocrine therapy + Everolimus : Positive results

Dual inhibition of E2 and mTOR

From: Prat and Baselga Nature Clinical Practice Oncology (2008) 5, 531-542

BOLERO-2: AI +/- mTOR inhibitor

Baselga et al. NEJM 2011

Therapeutic Algorithm For Luminal Subtype of MBC: My View

Postmenopausal ER+ MBC

NSAI: Letrozole or Anastrozole acording to the previous NSAI

BKM120 (Pan-PI3K inhibitor) and Fulvestrant synergistically inhibit tumor growth

Exemestane + Everolimus Progressing Patients : Is There Any Rationale to Keep « the Pressure » on the PI3K/mTOR Pathways ?!

- Pts progression on Exemestane +
 everolimus
- Pts candidates for <u>chemotherapy</u>

Rb as Master-Regulator of the R-point

Abstract S1-6

Results of a Randomized Phase 2 Study of PD 0332991, a Cyclin-Dependent Kinase (CDK) 4/6 Inhibitor, in Combination with Letrozole vs Letrozole Alone for First-Line Treatment of ER+, HER2– Advanced Breast Cancer (TRIO-18)

RS Finn,¹ JP Crown,² I Lang,³ K Boer,⁴ IM Bondarenko,⁵ SO Kulyk,⁶ J Ettl,⁷ R Patel,⁸ T Pinter,⁹ M Schmidt,¹⁰ Y Shparyk,¹¹ AR Thummala,¹² NL Voitko,¹³ A Breazna,¹⁴ ST Kim,¹⁵ S Randolph,¹⁵ DJ Slamon¹

¹University of California Los Angeles, Los Angeles, CA, USA; ²Irish Cooperative Oncology Research Group, Dublin, Ireland; ³Orszagos Onkologiai Intezet, Budapest, Hungary; ⁴Szent Margit Korhaz, Onkologia, Budapest, Hungary; ⁵Dnipropetrovsk City Multiple-Discipline Clinical Hospital, Dnipropetrovsk, Ukraine; ⁶Municipal Treatment-and-Prophylactic Institution, Donetsk, Ukraine; ⁷Technical University of Munich, Munich, Germany; ⁸Comprehensive Blood and Cancer Center, Bakersfield, CA, USA; ⁹Petz Aladar Megyei Oktato Korhaz, Gyor, Hungary; ¹⁰University Hospital Mainz, Mainz, Germany; ¹¹Lviv State Oncologic Regional Treatment and Diagnostic Center, Ukraine; ¹²Comprehensive Cancer Centers of Nevada, Henderson, NV, USA; ¹³Kyiv City Clinical Oncology Center, Ukraine; ¹⁴Pfizer Oncology, New York, NY, USA; ¹⁵Pfizer Oncology, La Jolla, CA, USA

Presented at SABCS 2012; December 5, 2012; San Antonio, TX, USA

Progression-Free Survival

HER-2 Positive Diseases

HER-2 OVEREXPRESSING METASTATIC BREAST CANCER: TOWARDS A CURE OF THIS DISEASE?

Dual Blockade with Taxanes in the Neoadjuvant Setting : NeoAltto and NeoSphere: Study Designs

Neo-Sphere

Pathologic CR Rates In NeoSphere

	Trast - Docetaxel	Pertuz – Docetaxel	Trast - Pertuz - Docetaxel	Trast - Pertuz
ITT (Overall)	29%	24%	46%	17%
ER-	37%	30%	63%	27%
ER+	20%	17%	26%	6%

The available data suggest significant molecular differences in HER2+ BC in relation to ER status

These differences may result in differing "pathway output dependency" and may have clinical research implications !

MTT: molecular-targeted therapy

Trastuzumab + Lapatinib or Pertuzumab (without chemotherapy): Main Message

Is it time to start thinking about to treat HER2 positive BC without chemotherapy !? Role of biomarkers in the selection of patients!?

LYMPHOCYTIC INFILTRATION PREDICTS FOR TRASTUZUMAB RESPONSE IN THE FINHER TRIAL

LPBC

Non-LPBC

LPBC Significant interaction p value p=0.032 Interaction p value for Stromal-Ly as a continuous variable (10%) p=0.02

Courtesy Sherene LOI

Adaptive immune system and immune checkpoints are associated with response to pertuzumab (P) and trastuzumab (H) in the NeoSphere study

Luca Gianni, Giampaolo Bianchini, Pinuccia Valagussa, Anton Belousov, Marlene Thomas, Graham Ross, Lajos Pusztai

on behalf of the 'NeoSphere' study investigators

Results Multivariate analysis with THP therapy

 A significant interaction was present between the ER status and IFNγ, PDL1 and CTLA4 (p=0.0003, p=0.025 and p=0.009 for the interaction term, respectively)

	ER neg	ER pos		
	OR (CI 95%)	р	OR (CI 95%)	р
PDL1	0.07 (0.01-0.60)	0.016		
IFNγ	9.63 (2.28-40.7)	0.002	0.11 (0.02-0.68)	0.018
CTLA4	0.03 (0.01-0.39)	0.007		
CD8A			5.97 (0.96-36.9)	0.055
Age (continuous)	1.05 (0.96-1.15)	0.26	0.88 (0.78-0.98)	0.025
LABC (vs non LABC)	1.61 (0.25-10.5)	0.616	NA	
IBC (vs non LABC)	5.58 (0.33-93.7)	0.232	NA	
cN1 (vs cN0)	0.82 (0.09-7.61)	0.861	0.36 (0.04-2.96)	0.346
PgR pos (vs neg)	0.11 (0.01-3.13)	0.199	0.09 (0.01-0.82)	0.033

DUAL HER-2 THERAPY IN THE (NEO)ADJUVANT SETTING : CONCLUSIONS (2013)

Dual HER2 inhibitors + taxane :

- Of interest in locally "bulky" disease !
- Wide use await ALTTO and APHINITY trials data

Dual HER-2 therapy alone

 Intensify translational research to help in the selection of patients candidates for dual HER-2 therapy without chemotherapy

HER2 Positive Metastatic Disease

Dual HER2 inhibitor

CLEOPATRA: Study design^{1,2}

- Primary endpoint: Independently-assessed progression-free survival (PFS)
- Collection of tumor tissue (archival in >90%) and serum samples was mandatory
- Study dosing q3w:
 - Pertuzumab/placebo:
 - Trastuzumab:
 - Docetaxel:

840 mg loading dose, 420 mg maintenance 8 mg/kg loading dose, 6 mg/kg maintenance 75 mg/m², escalating to 100 mg/m² if tolerated

* < 6 cycles allowed for unacceptable toxicity or PD; > 6 cycles allowed at investigator discretion
 HER2, human epidermal growth factor receptor 2; PD, progressive disease
 1. Baselga J, *et al.* SABCS 2011 (Abstract S5-5);
 2. Baselga J, *et al.* N Engl J Med 2012; 366: 109–119.

CLEOPATRA: Significant improvement in median PFS^{1,2} (and OS)³ with pertuzumab

D, docetaxel; Ptz, pertuzumab; T, trastuzumab

3. Swain S, et al. SABCS 2012 (Poster P5-18-26).

Copyrights for this presentation are held by the author/presenter. Contact baselgaj@mskcc.org for permission to reprint and/or distribute.

Biomarker analyses in CLEOPATRA: A Phase III, placebo-controlled study of pertuzumab in HER2-positive, first-line metastatic breast cancer (MBC)

J Baselga,¹ J Cortés,² S-A Im,³ E Clark,⁴ A Kiermaier,⁵ G Ross,⁴ and S M Swain⁶

¹ Memorial Sloan-Kettering Cancer Center, New York, NY;
 ² Department of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain;
 ³ Department of Internal Medicine, Seoul National University College of Medicine, Korea;
 ⁴ Roche Products Limited, Welwyn, United Kingdom; ⁵ F. Hoffmann-La Roche Limited, Basel, Switzerland;
 ⁶ Washington Cancer Institute, MedStar Washington Hospital Center, Washington, DC

Copyrights for this presentation are held by the author/presenter. Contact baselgaj@mskcc.org for permission to reprint and/or distribute.

Shorter median PFS observed with mutated *PIK3CA* while treatment effect is maintained

		Pla+T+D			Ptz+T+D		
PIK3CA status	Patients, n	Events	Median, months	Patients, n	Events	Median, months	HR (95% CI)
Mut	90	63	8.6	86	45	12.5	0.64 (0.43, 0.93)
WT	191	101	13.8	190	83	21.8	0.67 (0.50, 0.89)
Overall	406	242	12.4	402	191	18.5	0.62 (0.51, 0.75)

- The prognostic impact of *PIK3CA* mutations cannot be attributed to a specific mutation, nor to mutation(s) in a specific exon, based on the available dataset
 - 182 mutations detected overall (32%)
 - Exon 7: 12; exon 9: 39; exon 20: 131

Mut, mutated; WT, wild-type

Copyrights for this presentation are held by the author/presenter. Contact baselgaj@mskcc.org for permission to reprint and/or distribute.

"Anatomy" of Trastuzumab-DM1

EMILIA Study Design

- Stratification factors: World region, number of prior chemo regimens for MBC or unresectable LABC, presence of visceral disease
- **Primary end points:** PFS by independent review, OS, and safety
- Key secondary end points: PFS by investigator, ORR, duration of response, time to symptom progression

Progression-Free Survival by Independent Review

32

Annual '12

Meeting

Overall Survival: Interim Analysis

Unstratified HR=0.63 (*P*=0.0005). NR=not reached.

33

Annual '12

Meeting

Evolving Algorithm for HER2+ Disease Through 3rd Line

How Can We Improve Upon HER2 therapy + Chemotherapy For HER2 Positive Breast Cancer?

- Better understand of HER-2 therapy sensitivity and resistance (biomarkers): difficult field
- The development of new anti-HER2 therapy overcoming the resistance : therapeutic breakthrough
- Characterize patients who may be candidates for different therapeutic strategies (e.g. chemotherapy alone, chemotherapy + biological or specific biological therapy alone)

TNBC/Basal-like Diseases

POOR OUTCOME OF A "TRIPLE NEGATIVE" BREAST CANCER CLINICAL CASE

ER – PgR – HER-2 – Ki67 80% HER-1 +++

"Triple Negative"

Progressive disease in spite of:

- FEC x 6
- Weekly paclitaxel
- Kinesin inhibitor
- Capecitabine
- Radiotherapy

Angiogenic and inflammatory pattern of the local recurrence !!!

T/FAC Neoadjuvant Response by PAM50 subtype

(12 weeks of paclitaxel followed by 4 cycles of FAC)

the overall pCR rate was 22%

Classification	RD	pCR
Basal-like	11 (41%)	16 (59%)
HER2-enriched	17 (59%)	12 (41%)
LumA	36 (100%)	0(0%)
LumB	22 (82%)	5 (18%)
Normal-like	13 (93%)	1(7%)
Triple Negative	13 (50%)	13 (50%)
Any Positive	82 (80%)	20 (20%)
Triple Negative/Basal	6 (35%)	11 (65%)
Triple Negative/Non-Basal	7 (78%)	2 (22%)
Non-Triple Negative/Basal	4 (50%)	4 (50%)
Non-Triple Negative/Non-Basal	78 (83%)	16 (17%)

Parker et al. J Clin Oncol; 27:1160-1167 2009

Lehmann et al, JCI 2011

- Genomic instability common
- Multiple subsets with varying targets
 - Basal-like 1 and 2 DNA damage response genes
 - Immunomodulatory
 - Mesenchymal and mesenchymal / stem cell PI3K/mTOR pathway
 - LAR androgen receptor signaling

Targeting the androgen receptor (AR) in women with AR+ ER-/PRmetastatic breast cancer TBCRC011

Abstract #1006

Gucalp A, Tolaney S, Isakoff S, Ingle J, Liu MC, Carey L, Blackwell K, Rugo H, Nabell L, Forero A, Stearns V, Momen L, Gonzalez J, Akhtar A, Giri D, Patil S, Feigin K, Hudis CA, Traina TA

> on behalf of Translational Breast Cancer Research Consortium

Presented at the 2012 ASCO Annual Meeting. Presented data is the property of the author.

ASCO Annual '12 Meeting

Bicalutamide Results : Patients with Clinical Benefit (5/24 = 21%)

Patients with clinical benefit on bicalutamide	AR%	ER%	PR%	HER2	Site of Testing	Site of Mets	Prior Therapy MBC/ LABC	DOR on Prior Therapy
#1	10-20	1	0	Neg	10	LN	0	NA
#2	>80	3	0	Neg	Met	GI	0	NA
#3	>80	0	0	-/+	1º	Breast, LN	1	NR
#4	>90	0	0	Neg	10	LN, Bone	1	158wk
#5	>50	0	0	Neg	10	LN, Bone	1	15 wk

DOR duration of response; NAnot applicable; NR no response

PRESENTED AT ASO Annual 12 Meeting

Reported Studies Evaluating Cisplatin or Carboplatin for the Treatment of Patients With BRCA-Mutant Breast Cancer and/or TNBC

Study	Study Design	Population	No. of Patients	Treatment	Results
Byrskiet al [∞]	Retrospective- neoadjuvant	BRCA1 mutant	102	CMF, n = 14; AC, n = 23; FAC, n = 28; AT, n = 25; cisplatin, n = 12	pCR: CMF, 7%; AC, 22%, FAC, 21%; AT, 8%; cisplatin 83%)
Byrski et al [∞]	Pilot neoadjuvant	BRCA1 mutant	10	Cisplatin	pCR: 90%
Gronwald et al	Neoadjuvant phase II	BRCA1 mutant	25	Cisplatin	pCR: 72%
Silver et al	Neoadjuvant phase II	TNBC, n = 2 BRCA1 mutant	28	Cisplatin	pCR: 22% (95% CI, 9% to 43%)
Alba et al	Neoadjuvant randomized phase II	TNBC	94	$EC \times 4 \rightarrow T v EC \times 4 \rightarrow T + carbo$	pCR: EC × 4 \rightarrow T, 30%; EC ×4 \rightarrow T + carbo, 30%
Advanced setting					
Wang et al	Phase II	First-line advanced TNBC	45	Cisplatin + gem	ORR: 62% (95% Cl, 47.5% to 77%)
Bhattacharyya et al [∞]	Randomized phase II	Second-line advanced TNBC	126	Metronomic CM (n = 66) v metronomic CM + cisplatin (n = 60)	ORR: metronomic CM, 30%; metronomic CM + cisplatin, 62%

Metzger-Filho JCO 2012

Redundant Mechanisms of DNA Repair May Offer a Therapeutic Opportunity in Basal-like BRCA1-/- Breast and Ovarian Cancer

Olaparib demonstrated high efficacy in BRCAmutated tumors

	Olaparib 400 mg twice daily (n=27)	Olaparib 100 mg twice daily (n=27)			
Objective response	11(41%; 25–59)	6 (22%; 11–41)			
Complete response	1 (4%; 1–18)	0			
Partial response	10 (37% <u>; 22–56</u>)	6 (22%; 11–41)			
Stable disease	12(44%; 28-63)	12 (44%; 28–63)			
Progressive disease	4 (15%; 6–32)	9 (33%; 19–53)			
Data are number (%; 95% Cl).					

	Olaparib 400 mg twice daily (n=33)	Olaparib 100 mg twice daily (n=24)
Objective response	11(33%, 20–51)	3 (13%, 4–31)
Complete response	2 (6%, 2-20)	0
Partial response	9 (27%, 15–44)	3 (13%, 4–31)
Stable disease	12(36%, 22–53)	7 (29%, 15 - 49)
Progressive disease	10 (30%, 17–47)	14 (58%, 39 – 76)
Duration of response (days)	290 (126–506)	269 (169–288)*

BRCA-mutant ovarian cancer

Tutt A et al, Lancet 2010 Audeh MW et al, Lancet 2010

BRCA-mutant breast cancer

Treatment with Histone Deacetylase Inhibitors Creates 'BRCAness' and Sensitizes Human Triple Negative Breast Cancer Cells to PARP Inhibitors and Cisplatin

> Kapil N. Bhalla, Rekha Rao, Priyanka Sharma, Soumyasri Das Gupta, Lata Chauhan, Shane Stecklein, and Warren Fiskus

Treatment with HDAC inhibitor induces proteasomal degradation of BRCA1,BRCA2, ATR and CHK1

Co-treatment with vorinostat (VS) and cisplatin synergistically induces apoptosis of breast cancer cells

Basal-like/TNBC diseases : Conclusions

- 1. A group of TNBC benefits of standard chemotherapy
- 2. BRACA mutated : significant tumor response to cisplatin and PARP inhibitors (Olaparib)
- Genomic era : better understanding of the tumor heteroneity and biology which might lead to new targets and new agents

New targets / Agents in Breast Cancer

HSP90 inhibitors : Degradation of oncogenic client proteins

Ganestespib : Clinical activity in a TNBC patient

39 YO female – heavily pretreated: adriamycin+Cytoxan, Paclitaxel, chest wall RT, Avastin+Xeloda, Cisplatin, Xeloda (1 mo), cediranib+olaparib (3.5 mo) Ganetespib monotherapy

Baseline

Week 16

Ganestespib : ENCHANT study design

Ganetespib monotherapy150mg/m² twice weekly for 3 weeks and 1 week off (PET/CT before treatment and on d18 of first cycle)

Getting familiar with "circus plots" in the era of NGS

PRESENTED BY: Martine J. Piccart

PRESENTED AT: ASCO Annual '12 Meeting

Matching patient / tumor / molecular aberration / test-platform / drug: The basis for individualized oncology

Molecular/Functional imaging

Anti HER2 therapy for 2 weeks : a "dramatic" early response in the neoAltto trial

Primary Tumor + 2 Lymph Node Mets

Baseline

After 2 weeks

FDG PET-CT images

Zirconium-89-trastuzumab localizes to HER-2 expressing tumors (and heart) : Mapping HER-2 heterogeneity ?

Bone & liver metastases

Bone metastases Heart uptake Massive bone metastases

S.M Knowles, JCO, 2012

FDG PET/CT and ⁸⁹Zr-Trastuzumab PET/CT in a patient (ER+/HER-2+) with bone metastases responding to therapy

THANK YOU